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Abstract

The M3D(Multi-level 3D) tokamak simulation project aims at the simulation

of tokamak plasmas using a multi-level tokamak code package. Several current

applications using MHD and Extended-MHD models are presented; high-� dis-

ruption studies in reversed shear plasmas using the MHD level MH3D code,

!�i stabilization and nonlinear island rotation studies using the two-
uid level

MH3D-T code, studies of nonlinear saturation of TAE modes using the hy-

brid particle/MHD level MH3D-K code, and unstructured mesh MH3D++ code

studies. In particular, three internal mode disruption mechanisms are identi�ed

from simulation results which agree well with experimental data.

1. Introduction

Recent nonlinear MHD simulation results for high-� disruptions[1] and dou-

ble tearing sawteeth[2] have rea�rmed that many global behaviors of tokamak

plasmas can be successfully explained using MHD simulation. However, as toka-

mak experiments reach higher performance regimes, more sophisticated experi-

mental diagnostics coupled with ever expanding computer capabilities have in-

creased both the need for and the feasibility of 3D nonlinear global simulations

using models more realistic than MHD. We currently use various \Extended-

MHD" models as well as the MHD model to study the global behavior of toka-

mak plasmas. These include a two-
uid model which is used to study �nite

gyroradius drift-MHD modes, and a Particle/MHD hybrid model which is used

to study the nonlinear evolution of kinetic-MHD modes. These and the unstruc-

tured mesh capability represent the present status of our M3D(Multi-level 3D)

tokamak simulation project.

The M3D project aims at the simulation of tokamak plasmas using a multi-

level tokamak code package. A multi-level code is necessary for the study of

tokamaks, where complex phenomena can be modeled with various levels of

realism. By comparing results from di�erent levels, one can delineate the physics

involved and ensure that particular approximations are relevant. This is also a

step by step path which leads toward a comprehensive tokamak simulation code

which would include most of the relevant physics and also allow various option

levels in complexity of physics and geometry. A higher level M3D code contains

the lower level codes, such that lower level benchmarks are still useful and the

simulation can change to a di�erent level at any point in the calculation. (A

simulation code with complete physics, but without intermediate option levels,

would produce results too complex for the user to delineate the physics involved

and would be very di�cult to benchmark completely.)

In the following sections, we present 3D simulation studies using various

option levels of the M3D project; high-� disruption studies in reversed shear

plasmas using the MHD level MH3D code, !�i stabilization and nonlinear island

rotation studies using the two-
uid level MH3D-T code, studies of nonlinear

saturation of TAE modes using the hybrid particle/MHD level MH3D-K code,

and unstructured mesh MH3D++ code studies.
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2. MHD simulation

The MH3D code is used to study the mechanisms of internal mode disruption

in reversed shear plasmas. Previous studies of normal shear plasmas have shown

that toroidally localized high-n ballooning modes can be driven unstable by local

pressure steepening in the bad curvature region, which arises from the evolution

of low-n modes.[1] Nonlinearly, the high-n mode becomes even more localized

and produces a strong local pressure bulge which destroys the 
ux surfaces

resulting in a thermal quench.

Reversed
shear region

φ=0

        Normal
shear region

φ=π
5o7d5

5o7f12

(a)

(b)

Figure 1: (a)Pressure contours of the 3D equilibrium. Two local pressure steep-

enings occur; the stronger one inside the reversed shear core region at � = 0,

and the other in the normal shear region at � = �. (b)The later nonlinear de-

velopment of the pressure. The localized high-n ballooning mode develops only

from the pressure steepening in the normal shear region.

A similar behavior is also seen in simulations of reversed shear plasmas. The

Fig. 1(a) shows pressure contours of a 3D equilibrium which results from the

nonlinear evolution of an n=1 linear instability using a TFTR initial pro�le with

3.8% peak �: (The aspect ratio used is 2.9, but a smaller aspect ratio is depicted

in the �gure only to save space.) This 3D equilibrium has two local pressure

steepenings both on the outboard side as indicated with arrows; the stronger

one inside the reversed shear core region at toroidal angle � = 0, and the other

in the normal shear region at � = �. A toroidally localized high-n ballooning

mode grows out of the local steep pressure region in the normal shear region and

eventually destroys the 
ux surfaces resulting in a thermal quench, as shown in

Fig. 1(b). The toroidally localized steep pressure gradient inside the reversed
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shear core, although much stronger than the one outside, remains stable, show-

ing that the advantage of the reversed shear pro�le regarding pressure driven

modes extends far into the 3D con�guration.

#5n7a14
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Figure 2: The nonlinear deformation of pressure contours evolving from an m=2

dominant n=1 mode, when toroidally localized high-n modes are stable.
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Figure 3: Puncture plot of �eld lines on the toroidal mid-plane of the torus.

For reversed shear cases, disruptions can also be caused by low-n modes

alone without a toroidally localized high-n ballooning mode, when the qmin is

close enough or lower than 2. (This will probably also apply to qmin close

to other rational numbers like 3.) Fig. 2 shows the nonlinear deformation of

pressure evolving from an m=2 dominant n=1 mode. In this case, a toroidally

localized high-n ballooning mode is not destabilized, probably because the q

pro�le used has a smaller 
at region around qmin compared to the previous

case. The pressure bulge shown on the right �gure pushes the plasma into

the plasma boundary and drives magnetic reconnection until the outer region

becomes stochastic.

This is seen in Fig. 3 which shows the puncture plot of �eld lines on the

toroidal mid-plane of the torus. The pressure bulge shown on the right �gure

of Fig. 2 corresponds to the bulge on the right side of the � = �� line(which

is the same line as � = �). This bulge drives reconnection producing aligned
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X-points of various island chains as indicated by X 0s on the �gure, and causes

stochasticity. On the inboard side, mixed X-points and O-points occur as shown

by X 0s and O0s on the left side of the � = �� line. (This mechanism is similar

to the pressure bulge in m=1 reconnection cases.[3])

The above two mechanisms of internal mode disruption are due to high-�

e�ects. Another mechanism which can cause disruption for a reversed shear

plasma is when a double-tearing reconnection occurs with a large mixing ra-

dius.[2] This can happen for both high-� and low-� plasmas. In summary,

three mechanisms are identi�ed that can cause an internal mode disruption in

high temperature reversed shear plasmas; (1)toroidally localized high-n modes

driven unstable by local pressure steepening in the bad curvature region that

arises from the evolution of low-n modes, (2)a large pressure bulge caused by

the nonlinear development of a low-n mode, (3)a double-tearing reconnection

with a large mixing radius. The mechanism (3) can occur only when qmin is

lower than 2(or other low mode number rational surfaces), while mechanisms

(1) and (2) do not have such a restriction. All three mechanisms are seen in the

experiment and the experimental data agrees well with the scenarios presented

here. In addition, the mechanism (3) can be mixed with either of the other two

mechanisms to produce a disruption.

3. Two-
uid simulation

The MH3D-T code[4] is the two-
uid extension of theMH3D code. The two-


uid equations are obtained by generalizing the perturbative drift ordering[5]

to arbitrary perturbation size. They are closely related, although not identical,

to the collisional Braginskii equations [6]. The model was chosen, in part, to

transform smoothly into the resistive MHD equations in the limit of vanishing

gyroradii.

The drift ordering [5] assumes 
uid velocities and growth rates small com-

pared to the thermal velocity scales of the MHD ordering, v=vth � �, @=@t �

�vth=L, and !=
ci � �i=L � �, where � is a characteristic small parameter,

vth is the ion thermal speed, L a characteristic equilibrium scale length, ! a

typical frequency, 
ci the ion cyclotron frequency, and �i the ion gyroradius.

The ordering introduces the diamagnetic velocities

v�j = B� rpj=(qjnjB
2) (1)

v�Tj = B� rTj=(qjB
2); (2)

for j = e, i, where qj is the particle charge.

The 
uid velocities can be written exactly as

vi = v+ vdi (3)

ve = v+ v�e � J
k
=ene (4)

v = v? + vik; (5)

where v? is the perpendicular guiding center velocity of the electrons and ions,

neglecting magnetic drifts. The generalized \diamagnetic" part vdi of the ion


uid velocity perpendicular to the magnetic �eld is de�ned to be

vdi �
J?

ene
+ v�e; (6)
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where v�e is given by Eq. (1) with j = e.

In rationalized emu units, the essential features of our two-
uid model can

be summarized as

@v

@t
+ (v � r)v = � (vdi � r)v? +

J�B

nmi

�
rp

nmi

+ �r2vi (7)

@B

@t
= �r �E (8)

E+ v�B = �J�
rkpe

en
(9)

@pi

@t
+ vi � rpi = ��ipir � vi +r � n�?ir?(

pi

n
) +r � n�kirk(

pi

n
)

��ir � (piv�T i) (10)

@pe

@t
+ ve � rpe = ��eper � ve +r � n�?er?(

pe

n
) +r � n�

kerk
(
pe

n
)

��er � (pev�Te) (11)

@ne

@t
+ ve � rn = �nr � ve (12)

J = r�B (13)

0 = r �B: (14)

The electron mass is neglected and quasineutrality, ne = ni = n, is assumed.

Here pj = nTj , p is the total pressure. The �j 's are the ratios of the speci�c

heats. The large �kj is accurately modeled using the arti�cial sound method.[7]
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Figure 4: (a)Stabilization of the m = 1, n = 1 resistive mode compared to the

analytic dispersion relation. Crosses represent the analytic growth rates, circles

the MH3D-T results for equilibrium pro�les pe = pi. Triangles show the MH3D-

T case with pe = 0, illustrating the destabilizing e�ect of !�e. (b)Direction of

the m = 1, n = 1 plasma kink 
ow relative to the reconnection X-point in a

poloidal cross section. Circles represent the ion 
uid 
ow vi and diamonds the

guiding center velocity v for equilibrium pe = pi. Triangles represent vi for

pe = 0.

The code has been benchmarked against analytic theory for the diamagnetic

stabilization of the m = 1, n = 1 mode in a cylinder. The analytic dispersion

relation was solved numerically [8] for a narrow reconnection layer. A uniform

resistivity � = S�1 = 3:24� 10�5 and toroidal plasma beta �o = 0:067 at the

center of the plasma was used. Viscosity and thermal and particle di�usion were

6



small compared to the resistivity. q varied from qo = 1:1 to qa = 5, with q = 2

at r=a = 0:63. In the �rst case, it was assumed that pe = pi in equilibrium.

The results are shown in Fig. 4(a), where the growth rate 
 is plotted against

the diamagnetic parameter !�i=
o. Crosses represent the analytic results, and

circles the numerical results. Good agreement is found over a wide range of

growth rate. The destabilizing e�ect of the electron diamagnetic frequency !�e
at �xed total � is seen by comparing the case pe � 0 (triangles).

The ion diamagnetic stabilization has a simple physical interpretation.[4]

The direction of the outward kink motion of the plasma inside the q = 1 surface

rotates poloidally away from the reconnection X-point as !�i=
o increases, up to

approximately �=2. This reduces the e�ciency of the mode drive, and slows the

rate of reconnection. The relative angle �� versus !�i=
o is plotted in Fig. 4(b).

For the case pe = pi the angle of the radial ion 
uid 
ow vir is given by circles

and the particle 
ow vr by diamonds. The electron diamagnetic drift !�e exerts

its destabilizing e�ect by resisting the rotation of the kink. When pe � 0, 
ow

rotation and mode stabilization develop much faster (triangles show vir).

The MH3D-T code has been used to study the rotation of linear and non-

linear resistive modes in a torus. The linear mode rotates in the !�e direction

if pe is comparable to pi, and in the !�i direction if pe is small (in the elec-

tron guiding center frame). Nonlinearly however, the magnetic island rotation

is quite di�erent. From Eq. 9, one can see that �nite size islands have to be

stationary (except for a slow speed proportional to �) in the electron guiding

center frame, if rkpe is small. This is because the X-point has to move with v?
from the frozen-in 
ux condition for � = 0. Any rotation speed on the order of

a fractional power of � would require a fast reconnection process. This requires

a large free energy which is absent near the saturation of the mode. Simulation

results agree with this reasoning. For rkpe 6= 0, islands rotate with !�e. How-

ever, rkpe / nrkTe+Terkn and rkTe becomes negligibly small in the electron

transit time scale, while r
k
n becomes small in the sound wave time scale(as

also seen in Ref. 9 and 10 using reduced equations). If the plasma rotation is

very fast, r
k
n can remain signi�cant due to centrifugal force, but for a realistic

rotation speed it can be neglected. In the simulation with TFTR parameters,

it takes about 100 to 1000 sound wave transit times for r
k
n to become small

for islands of a few cm, because of the proximity of low mode number rational

surfaces. This gives 0.1 to 1 msec for rkn 
attening. (rkTe 
attening is much

faster.) Since magnetic islands in tokamaks can form as fast as � 0:1 msec

through a fast reconnection precess, an experimental measurement of the slow-

ing down of the magnetic island rotation(in the electron guiding center frame)

due to the 
attening of rkn may be feasible.

4. Particle/MHD hybrid simulation

To model the nonlinear interaction of energetic particles with MHD waves,

a hybrid particle/MHD model had been developed.[11] The plasma is divided

into two parts: the bulk plasma, which contains the thermal electrons and ions,

and the energetic hot ions. The bulk plasma is described by the ideal MHD

equations, whereas the hot ions are described by the gyrokinetic equations[12].

The particle part can be coupled to the bulk plasma part through one of two

almost equivalent, accurate coupling schemes, the pressure coupling and current
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coupling. In the pressure coupling scheme, the hot particle pressure tensor Ph

is coupled to the bulk plasma momentum equation:

�b
dvb

dt
= �rPb � (r � Ph)? + J�B; (15)

In the current coupling scheme, the hot particle current density Jh and charge

density qh are coupled to the bulk plasma momentum equation:

�b
dvb

dt
= �rpb + (r�B� Jh)�B+ qhvb �B; (16)

where the subscript b denotes the bulk part and the subscript h denotes the hot

ion component. The last term of Eq. 16 can be thought of as the subtraction of

the J�B force on the electrons whose density is the same as the hot particles.

This term cannot be neglected because the E � B drift can be comparable to

the perturbation of the magnetic drift of the hot particles.

Equation 15 or Eq. 16, together with the other MHD equations form the

MHD part which is advanced in time using particle quantities given by the

particle part. The new E and B are in turn used by the particle part to advance

the particle quantities in time. The model is fully self-consistent, including

nonlinear Landau damping and other hot particle interactions with MHD waves,

and the nonlinear MHD mode coupling.

Using the particle/MHD hybridMH3D-K code we have found that wave par-

ticle trapping is the dominant mechanism for the nonlinear TAE saturation.[13]

In this work, the pressure coupling scheme was employed. The \double trajec-

tory method" was used to reduce the simulation noise in the linear regime. In

this method, two sets of particles are used, one following the equilibrium �eld

and the other the total electromagnetic �eld. The hot particle pressure tensor

Ph(t) is replaced by (Ph(t)� Ph;0(t)) + Ph;0(0) where Ph;0 is evaluated from the

equilibrium orbits. The advantage of the double trajectory method is that it can

be applied self-consistently to any 3D equilibrium with an arbitrary distribu-

tion of particles including a delta function in velocity space. The disadvantage

is that it is only valid for the linear regime.

The �f method of noise reduction[15], on the other hand, also applies in the

nonlinear regime. However, because of di�culties, it has not been applied in a

self-consistent manner to a 3D electromagnetic problem with a self-consistent

equilibrium. We have devised a scheme for a self-consistent �f method for such

cases, and implemented it in the MH3D-K code. The new linear results agree

closely with the double trajectory method results, while improved nonlinear

saturation results have been obtained which still give the same conclusion as

obtained before in Ref. 13. The self-consistent �f method and MH3D-K simu-

lation results of TAE saturation will be described at this conference by Fu et al.

in a TAE mode paper.

5. Unstructured mesh code

As demonstrated in 
uid dynamics research, the most e�cient way to repre-

sent general geometric e�ects is to use an unstructured numerical mesh. Finite

element, unstructured mesh methods are now just beginning to be used in MHD

computations. Unstructured meshes o�er two important advantages. They may
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be �tted to complicated geometries. This is necessary for simulations of divertor

tokamaks.[16, 17] The second advantage is the ability to introduce localized mesh

re�nement. For example, extra vertices may be added at a magnetic X-point.

The meshpoints of the unstructured mesh are the vertices of triangles (see

Fig. 5(a)), located at points ~ri. The most convenient basis functions are piece-

wise linear \tent" functions, �i(~r), which are nonzero at a vertex common to

several triangles, and which vanish at all other vertices.

The variables in the MHD equations are represented as a sum over poloidal

�nite element basis functions and toroidal Fourier harmonics. We use a mixed

method in which the variables to be expanded in basis functions include the

electrostatic potential �; magnetic 
ux  ; toroidal vorticity W and toroidal

current C: The MHD equations are discretized with a zero residual Galerkin

approach, in which the equations are multiplied by a basis function �j and

integrated over the domain. This gives a set of sparse matrix equations, in

which the di�erential operators become sparse matrices involving integrals of

the basis functions and their derivatives. These can be done analytically. In the

Laplacian, integration by parts is used to avoid having to take second derivatives.

The primary matrices appearing in the discrete equations are the mass matrix

M; the sti�ness matrix S; and the Poisson bracket tensor P; de�ned by

Mij =

Z
�i�jd

2x (17)

Sij = �

Z
r�i � r�jd

2x (18)

Pijk =

Z
�ir�j �r�k � ẑd

2x (19)

Both the sti�ness and mass matrices are symmetric. The Poisson bracket is

anti-symmetric under the exchange of any two indices. This assures that some

of the most important integral relations satis�ed by the di�erential equations

are preserved by the �nite element discretization. This includes conservation of

energy and magnetic 
ux in the absence of dissipation. The matrices are very

sparse, having nonzero elements only between those vertices connected by the

side of a triangle.

Although the use of the sti�ness matrix causes no problems when the elec-

trostatic potential � is calculated from the toroidal vorticityW; there is a loss of

accuracy and even convergence when the toroidal current C is calculated from

the poloidal 
ux  using the sti�ness matrix. Convergence is restored by cal-

culating the current in two steps: �rst calculating the poloidal magnetic �eld

components from  ; and expanding the result in basis functions; then taking

the toroidal component of the curl and again expanding in basis functions. This

is equivalent to using a larger stencil for the current calculation, which preserves

the necessary symmetries for energy conservation [18].

The �nite element unstructured mesh discretization has been incorporated

into MH3D++ with an object oriented approach. A bene�t of object oriented

programming is that the objects are like black boxes whose inner workings are

hidden from and protected from the user. They can be linked with other code

in a simple way, without having to be concerned with details of their inner

workings. The unstructured mesh objects, called MeshObject, generate an un-

structured mesh, create all necessary auxiliary arrays, and produce the sparse

matrices which implement di�erential operators including gradient, curl, and

9



(a) (b)
φ=0 φ=π

Figure 5: (a)An unstructured mesh for an ITER-like geometry. Note that the

mesh has no origin. (b)Pressure contours resulting from nonlinear development

of a pressure driven mode after a pellet injection.

divergence, as well as various Poisson solvers based on the Incomplete Cholesky

Conjugate Gradient method.

An important feature of this approach is that most of the MH3D code is

retained. The user has the option of linking the code in the standard way, to

produce a code that runs as a �nite di�erence/Fourier code; or linking with

MeshObject, to give an unstructured mesh. This allows direct benchmarking

of the two versions against each other. Equilibrium and stability calculations

using the two versions have been compared, and there is good agreement.

As a nontrivial example of the use of the MH3D++ code, we consider pellet

injection into an ITER like tokamak. The pellet is assumed to rapidly heat and

form a large pressure perturbation, which is poloidally and toroidally localized.

The peak pressure of the perturbation is 0.25 of the peak pressure in the toka-

mak, which has 4% peak �: The initial state consists of an equilibrium, on which

the pellet perturbation is superposed. A pressure driven instability develops and

undergoes a large distortion as shown in Fig. 5(b). The implication of this result

is currently under study.

6. Conclusion

The M3D(Multi-level 3D) tokamak simulation project aims at the simula-

tion of tokamak plasmas using a multi-level tokamak code package. Several

current applications are presented; high-� disruption studies in reversed shear

plasmas using the MHD level MH3D code, !�i stabilization and nonlinear island

rotation studies using the two-
uid level MH3D-T code, studies of nonlinear sat-

uration of TAE modes using the hybrid particle/MHD level MH3D-K code, and

unstructured mesh MH3D++ code studies. In particular, three internal mode

disruption mechanisms are identi�ed from simulation results which agree well

with experimental data.

The successful applications of these MHD and Extended-MHD codes support

the premise of the M3D project that a multi-level simulation code is necessary

for the study of tokamaks, where the complex phenomena can be modeled with
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various levels of realism. It is also a hopeful sign that this step by step path

could eventually lead to a comprehensive tokamak simulation code which would

include most of the relevant physics and also allow various option levels in

complexity of physics and geometry.
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